Human induced pluripotent stem cell-derived mesenchymal stem cells prevent adriamycin nephropathy in mice

نویسندگان

  • Hao Jia Wu
  • Wai Han Yiu
  • Dickson W.L. Wong
  • Rui Xi Li
  • Loretta Y.Y. Chan
  • Joseph C.K. Leung
  • Yuelin Zhang
  • Qizhou Lian
  • Kar Neng Lai
  • Hung Fat Tse
  • Sydney C.W. Tang
چکیده

Human induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSCs) are emerging as attractive options for use in cell replacement therapy, but their effect in kidney diseases remains unknown. Here, we showed that intravenous injection of iPS-MSCs protect against renal function loss in both short-term and long-term models of adriamycin nephropathy (AN). In the short-term AN model, iPS-MSCs conferred a substantial anti-apoptotic effect on tubular cells, associated with a downregulation of Bax and Bax/Bcl2 ratio and an upregulation of survivin expression. In vitro, conditioned medium from iPS-MSCs (iPSMSC-CM) significantly limited albumin-induced tubular apoptosis and enhanced tubular proliferation, accompanied by a reduced expression of tubular Bax and an elevated expression of Bcl2 and survivin. Oxidative stress was markedly attenuated by iPS-MSCs both in AN mice and in protein-overloaded tubular cells. In the long-term AN model, repeated injections of iPS-MSCs significantly inhibited tubulointerstitial fibrosis and reduced intrarenal deposition of collagen I, collagen IV and αSMA. Modulation of the hedgehog signaling pathway contributed to the anti-fibrotic effect of iPS-MSCs in chronic AN. Finally, we detected that most of the infused iPS-MSCs were entrapped in the lungs. In conclusion, our data support a beneficial role of iPS-MSCs in both acute and chronic AN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and Characterization of Human Induced Pluripotent Stem Cells-Derived Mesenchymal Progenitors

Purpose: Isolating human induced pluripotent stem cells (hiPS)-derived mesenchymal progenitors as a new source of mesenchymal cells which can differentiate into different lineages like adipose and bone. Materials and Methods: After 7 days of hiPS1 culture on matrigle coated dishes, spindle like cells around colonies were removed by cell scraper. These cells that had mesenchymal like morphology ...

متن کامل

Evaluation of Therapeutic Effects of Autologous Bone Marrow Mesenchymal Stem Cells to Prevent the Progression of Chronic Nephropathy in Renal Transplant

Background Chronic allograft nephropathy(CAN)  is one of the most common causes of chronic and end stage renal disease. It  is defined with Mainly tubular atrophy and  interstitial fibrosis and no evidence of any other etiology, or functional disorder that caused at least three months after transplantation . Control of risk factors (HTN,DM,HLP, …) and limiting  usage of calcineurin inhibitors...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

P-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells

Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017